Transformator: Unterschied zwischen den Versionen

Aus Brand-Feuer.de
Zur Navigation springenZur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 13: Zeile 13:
Bild:Erhitzter Trafo (1).jpg|in einer Decke verbaute Trafos, die Deckenspots mit Strom versorgten  
Bild:Erhitzter Trafo (1).jpg|in einer Decke verbaute Trafos, die Deckenspots mit Strom versorgten  
Bild:Erhitzter Trafo (2).jpg|Hitzeeinwirkung aus einem Trafo
Bild:Erhitzter Trafo (2).jpg|Hitzeeinwirkung aus einem Trafo
Bild:Erhitzter Trafo (3).jpg|eutliche Brandspuren
Bild:Erhitzter Trafo (3).jpg|deutliche Brandspuren
</gallery></div>
</gallery></div>
<br/>
<br/>

Version vom 29. Mai 2017, 11:13 Uhr

Trafo von 220 V auf 12 Volt für eine Klingel
Foto: Rainer Schwarz

Ein Transformator (von lat. transformare ‚umformen, umwandeln‘; auch Umspanner, kurz Trafo) ist ein Bauelement oder eine Anlage der Elektrotechnik.

Er besteht aus einem magnetischen Kreis – meist einem Ferrit- oder Eisenkern –, um den die Leiter mindestens zweier verschiedener Stromkreise so gewickelt sind, dass der Strom jedes Stromkreises mehrfach um den Kern herumgeführt wird. Legt man nun an eine dieser Wicklungen, auch Transformator-Spule genannt, eine Wechselspannung an, so stellt sich an der zweiten (und den evtl. weiteren vorhandenen) Wicklung(en) eine Wechselspannung ein, deren Höhe sich (im Leerlauffall) zu der ursprünglichen angelegten Spannung so verhält wie das Verhältnis der Windungszahlen der entsprechenden Wicklungen zueinander.

Hauptanwendungsgebiet von Transformatoren ist daher die Erhöhung oder Verringerung von Wechselspannungen. Gleichzeitig erfolgt eine galvanische Trennung der Stromkreise, außer beim Spartransformator. Transformatoren sind für die Stromversorgung unverzichtbar, da elektrische Energie nur mittels Hochspannungsleitungen über weite Entfernungen wirtschaftlich sinnvoll transportiert werden kann; der Betrieb von Elektrogeräten ist aber nur mit Nieder- und Kleinspannung praktikabel und sicher. Netztransformatoren befinden sich in nahezu allen Elektronikgeräten, denn in fast allen ist die Betriebsspannung von der Netzspannung verschieden. In der Signalverarbeitung und der Tontechnik kommen spezielle Transformatoren zum Einsatz, die nicht auf möglichst verlustarme Leistungsübertragung optimiert sind, sondern auf möglichst unveränderte und ungestörte Signalweitergabe über einen größeren Arbeitsfrequenzbereich.


Fotos: Jörg Cicha



Geschichte

Obwohl das Induktionsprinzip seit den Entdeckungen Michael Faradays von 1831 bekannt war, wurde der Transformator erst 50 Jahre später entwickelt. Lucien Gaulard und John Dixon Gibbs stellten 1881 den ersten Transformator in London aus. Der Begriff Transformator war zur damaligen Zeit noch nicht üblich; die Geräte wurden als „Sekundär-Generator“ bezeichnet. Davon leitet sich die bis heute übliche Zuordnung der Transformatoren zum Bereich der elektrischen Maschinen ab.<ref>Borns: Beleuchtung mittels sekundärer Generatoren. In: Elektrotechnische Zeitung. Nr. 5, 1884, S. 77–78</ref> Károly Zipernowsky, Miksa Déri und Ottó Titusz Bláthy (alle drei Ungarn) erhielten 1885 ein Patent auf den Transformator. Dieser war mechanisch nach dem umgekehrten Prinzip der heutigen Transformatoren aufgebaut; die Leiterspulen waren um einen festen Kern aus unmagnetischem Material gewunden, darüber wurden dicke Eisendraht-Lagen gelegt, die eine ferromagnetische Schale bildeten. Dieser Transformator wurde von der Firma Ganz & Cie aus Budapest weltweit vertrieben.

Wesentlichen Anteil an der Verbreitung des Wechselstromsystems und mit ihm des Transformators hatte der Amerikaner George Westinghouse. Er erkannte die Nachteile der damals von Thomas A. Edison betriebenen und favorisierten Energieverteilung mittels Gleichstrom und setzte stattdessen auf Wechselstrom (vgl. Stromkrieg). 1885 importierte Westinghouse eine Anzahl Gaulard-Gibbs-Transformatoren und einen Generator von Siemens. Damit realisierte er in Pittsburgh ein Stromnetz mit Wechselspannung für die elektrische Beleuchtung. William Stanley führte im gleichen Jahr als Chefingenieur von Westinghouse in Pittsburgh wesentliche Verbesserungen an Lucien Gaulards und John Gibbs’ Gerät durch. Westinghouse installierte 1886 in Great Barrington, Massachusetts, einen Wechselspannungsgenerator, dessen 500 V Wechselspannung zur Verteilung auf 3.000 V hochtransformiert und zum Betrieb der elektrischen Beleuchtung an den Anschlussstellen wieder auf 100 V heruntertransformiert wurde. Der wachsende Einsatz von Transformatoren führte in Verbindung mit der Schaffung von Wechselstromnetzen zum weltweiten Fortschreiten der Elektrifizierung.

Michail Dolivo-Dobrowolski entwickelte Anfang der 1890er-Jahre bei der AEG in Berlin den ersten Transformator für dreiphasigen Wechselstrom und führte den Begriff Drehstrom ein.<ref>VDE-Website</ref><ref>Gerhard Neidhöfer: Michael von Dolivo-Dobrowolsky und der Drehstrom. Anfänge der modernen Antriebstechnik und Stromversorgung. VDE-Buchreihe Geschichte der Elektrotechnik Band 9, 2. Auflage. VDE VERLAG, Berlin Offenbach, ISBN 978-3-8007-3115-2.</ref><ref>WEKA Media Lexikon</ref> Sein Drehstromtransformator wurde 1891, auf Anregung von Oskar von Miller, für die erste Fernübertragung elektrischer Energie mit Dreiphasenwechselstrom eingesetzt. Die Leitung ging am 24. August 1891 zwischen Lauffen am Neckar und der Internationalen Elektrotechnischen Ausstellung im 175 km entfernten Frankfurt am Main in Betrieb. Die in einem Wasserkraftwerk erzeugte Spannung von 50 V wurde zur Übertragung auf 15 kV hochtransformiert.

Bereits 1888 veröffentlichte der Münchner Elektroingenieur Friedrich Uppenborn ein Buch zur Geschichte des Transformators.<ref>Friedrich Uppenborn: Geschichte der Transformatoren, München/Leipzig, 1888. Englische Übersetzung 1889 als History of The Transformer. In: Open Library((Volltext bei Open Library))</ref> Gisbert Kapp erarbeitete bis 1907 die Grundlagen für die Berechnung und den Bau von Transformatoren.<ref>Gisbert Kapp: Transformatoren für Wechselstrom und Drehstrom: Eine Darstellung ihrer Theorie, Konstruktion und Anwendung. Berlin, 1907 ((Volltext bei Open Library)).</ref>


Grundprinzip

Idealtypisch besteht ein Transformator aus einem magnetischen Kreis, welcher als Transformatorkern bezeichnet wird, und aus mindestens zwei Wicklungen. Die der elektrischen Energiequelle zugewandte Wicklung wird als Primärseite (von lateinisch prīmarius‚ an erster Stelle) bezeichnet. Diejenige, an welcher sich die elektrische Last befindet, wird als Sekundärseite bezeichnet (von lateinisch secundarius‚ an zweiter Stelle).

Die Wirkungsweise lässt sich durch die folgenden Mechanismen beschreiben:<ref>Karl Küpfmüller, Wolfgang Mathis, Albrecht Reibiger: Kapitel 29.3 Der Transformator In: Theoretische Elektrotechnik, Eine Einführung. 17. Auflage, ISBN 3-540-29290-X (Vorlage:Google Buch).</ref>

  1. Eine Wechselspannung auf der Primärseite des Transformators bewirkt entsprechend dem Induktionsgesetz einen wechselnden magnetischen Fluss im Kern. Der wechselnde magnetische Fluss wiederum induziert auf der Sekundärseite des Transformators eine Spannung (Spannungstransformation).
  2. Ein Wechselstrom in der Sekundärwicklung bewirkt dem Ampère’schen Gesetz entsprechend einen Wechselstrom in der Primärwicklung (Stromtransformation).

Bei niedriger Wechselstromfrequenz besteht der magnetische Kreis typischerweise aus einem ferromagnetischen Material hoher Permeabilität. Damit können gegenüber Transformatoren ohne Eisenkern hohe magnetische Wechselflussdichten und damit eine wesentlich höhere Windungsspannung erzielt werden, was gewährleistet, dass die übertragbare Leistung groß ist im Vergleich zur Verlustleistung, die durch den ohmschen Widerstand in den Wicklungen entsteht. Einfach ausgedrückt, benötigt ein Transformator mit Eisenkern wesentlich weniger Windungen auf den Wicklungen als ein Trafo ohne Eisenkern.

Zum magnetischen Fluss im Unterpunkt 1 gehört ein Magnetfeld, welches ähnlich wie in einem Elektromagneten einen Stromfluss in der Primärspule bedingt. Der zum Aufbau des magnetischen Feldes benötigte Strom heißt Magnetisierungsstrom. Der Primärstrom, der entsprechend Unterpunkt 2 von der Stromtransformation herrührt, heißt primärer Zusatzstrom. Er fließt zusätzlich zum Magnetisierungsstrom und ist in der Regel als Wirkstrom wesentlich größer als dieser.


Anwendungen

Energietechnik

In der Energietechnik verbinden Transformatoren die verschiedenen Spannungsebenen des Stromnetzes miteinander. Maschinentransformatoren sind noch Teil der Kraftwerke und transformieren die im Generator induzierte Spannung zur Einspeisung in das Stromnetz in Hochspannung (in Westeuropa 220 kV oder 380 kV). Umspannwerke verbinden das überregionale Höchstspannungsnetz mit dem Mittelspannungsnetz der regionalen Verteilnetze. In Transformatorenstationen wird die Elektrizität des regionalen Verteilnetzes mit der Mittelspannung von 10–36 kV zur Versorgung der Niederspannungsendkunden auf die im Ortsnetz verwendeten 400 V Leiter-Leiter-Spannung transformiert. Wegen der hohen übertragenen Leistungen heißen die in der Stromversorgung verwendeten Transformatoren Leistungstransformatoren.

Leistungstransformatoren sind Drehstromtransformatoren, die entweder mit Transformatorenöl gefüllt oder als Trockentransformatoren ausgeführt sind. Für erstere gilt in der EU die Norm IEC (EN) 60076-1, für letztere die Norm IEC (EN) 60076-11. Parallel zu den EU-Normen existiert die IEEE-Normenreihe C57.<ref>IEEE-Normenreihe C57</ref>

Insbesondere in ringförmigen und mehrfach gespeisten Verteilnetzen ist es üblich, die übertragbare Leistung durch Parallelschaltung von Transformatoren zu erhöhen. Die hierzu eingesetzten Transformatoren haben gleiche Spannungsübersetzung, eine identische Schaltgruppe, nahezu gleiche Kurzschlussspannung und ähnliche Bemessungsleistungen. Das Übersetzungsverhältnis kann bei Drehstromtransformatoren, je nach Schaltgruppe, auch einen komplexen Wert annehmen, d. h., neben dem Betrag der Ausgangsspannung ändert sich auch deren Phasenlage. Zur Steuerung werden direkt in das Transformatorgehäuse Stufenschalter integriert.

Es kann zur Steuerung des Leistungsflusses notwendig sein, in räumlich ausgedehnten Verteilnetzen mit mehreren parallelen Leitungen mit unterschiedlichen Übertragungsleistungen (auch bei parallel zu Freileitungen betriebenen Kabelsystemen) spezielle Phasenschiebertransformatoren einzusetzen.

Das Transformatorprinzip findet in der Energietechnik auch in Stromwandlern Anwendung. Mit diesen werden hohe Stromstärken gemessen, indem der Strom zunächst heruntertransformiert wird. Stromwandler bestehen oft aus einem Ringkern mit Sekundärspule, der den Leiter umschließt, dessen Strom gemessen werden soll. Rogowskispulen sind wie Stromwandler aufgebaut, besitzen jedoch keinen magnetischen Kern.

Ein Tokamak, ein Kandidat für die Auslegung zukünftiger Fusionskraftwerke und Gegenstand aktueller Forschung, funktioniert ebenfalls nach dem Transformatorprinzip. In einem ringförmigen Vakuumgefäß wird eine Gasentladung herbeigeführt, indem in Leitern (Poloidalfeldspulen), die in Ringrichtung um das Gefäß angeordnet sind, der Strom langsam erhöht wird. Die Spulen bilden dabei die Primärwicklung, während das Gas im Vakuumgefäß die „Sekundärwicklung“ darstellt.


Elektrogeräte

In Elektrogeräten wandeln Transformatoren die an der Steckdose anliegende Netzwechselspannung von typischerweise 230 V auf die Betriebsspannung von Elektrogeräten oder Halogen-Niedervolt-Leuchten um.

Netzteile von Elektronikgeräten enthalten entweder einen konventionellen Netztransformator, welcher mit Netzfrequenz betrieben wird, oder ein Schaltnetzteil, welches den Transformator mit einer höheren Frequenz als der Netzfrequenz betreibt. Schaltnetzteile finden sich in Steckernetzteilen (siehe nebenstehendes Bild), Netzteilen für Notebooks oder in PCs. Eine höhere Frequenz anstelle der Netzfrequenz ermöglicht bei gleicher Leistung einen wesentlich kleineren und damit leichteren Transformator und kleinere Tiefpass-Siebglieder zur Glättung der vom entsprechenden Gerät benötigten Gleichspannung.

Sicherheitstransformatoren liefern sekundärseitig eine Kleinspannung, z. B. 6 V, 12 V oder 24 V. Sie müssen kurzschlussfest sein und die Isolation der Sekundär- von der Primärwicklung muss durch eine Zwischenwand aus Isolationsmaterial sichergestellt werden. Zu den Sicherheitstransformatoren gehören Spielzeugtransformatoren wie beispielsweise Transformatoren für den Betrieb von Modelleisenbahnen und Klingeltransformatoren. Trenntransformatoren dienen primär dazu, eine galvanische Trennung zwischen Primär- und Sekundärseite zu erreichen. Sie sind daher meist symmetrisch aufgebaut, d. h., die Primärspannung entspricht der Sekundärspannung. Andererseits können Netztransformatoren in speziellen Fällen ohne galvanische Trennung als so genannte Spartransformatoren ausgeführt sein.

Ältere Fernsehgeräte oder Computermonitore mit Kathodenstrahlröhre enthalten einen Zeilentransformator, mit dem neben der Versorgung der Zeilen-Ablenkspulen auch die für die Beschleunigung der Elektronen erforderliche Spannung (20–30 kV) erzeugt wird. Mittelfrequenztransformatoren sind für Frequenzen von einigen Hundert Hertz bis zu einigen Kilohertz ausgelegt. Sie werden beispielsweise beim Widerstandsschweißen eingesetzt.

Transformatoren mit Primärspannungen bis 1000 V unterliegen in Deutschland der ersten Verordnung zum Geräte- und Produktsicherheitsgesetz, welche die europäische Niederspannungsrichtlinie umsetzt. Sie müssen die Norm EN 61558 erfüllen, was mit der CE-Kennzeichnung dokumentiert wird. Ein Transformator mit CE-Kennzeichnung kann ohne weitere Kontrollen und Prüfungen innerhalb der EU in den Verkehr gebracht werden.




Zurück zur Hauptseite



Dieser Artikel basiert auf dem Artikel Transformator aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Bilder können unter abweichenden Lizenzen stehen. Der Urheber und die jeweilige Lizenz werden nach einem Klick auf ein Bild angezeigt.