Elektrostatik

Aus Brand-Feuer.de
Zur Navigation springenZur Suche springen
Blitzeinschlag infolge Elektrostatische Entladung in ein Wohnhaus und Schäden bis in den Keller
Foto: FW Luhe

Die Elektrostatik ist das Teilgebiet der Physik, das sich mit ruhenden elektrischen Ladungen, Ladungsverteilungen und den |elektrischen Feldern geladener Körper befasst.

Die Phänomene der Elektrostatik rühren von den Kraft|Kräften her, die elektrische Ladungen aufeinander ausüben. Diese Kräfte werden vom coulombschen Gesetz beschrieben. Ein klassisches Beispiel ist, dass geriebener Bernstein Teilchen anzieht (siehe Geschichte). Auch wenn die Kräfte klein erscheinen, ist die elektrische Kraft z. B. im Vergleich zur Gravitation außerordentlich stark. So ist die elektrische Kraft zwischen einem Elektron und einem Proton (beide bilden zusammen ein Wasserstoffatom) um ungefähr 40 Größenordnung#Dezimale Größenordnung größer als ihre gegenseitige Gravitation|.

Die Elektrostatik ist ein Spezialfall der Elektrodynamik für unbewegte elektrische Ladungen und stationäre, d. h. zeitlich gleichbleibende elektrische Felder. Die Elektrostatik findet ihr Analogie (Philosophie)|in der Magnetostatik, die sich mit stationären Magnetfeldern befasst, wie sie beispielsweise von zeitlich gleichbleibenden elektrischen Strömen erzeugt werden.


Geschichte

Schon im Altertum war bekannt, dass bestimmte Materialien wie beispielsweise Bernstein nach dem Reiben an einem Tuch oder Fell kleine leichte Teilchen anziehen (siehe Reibungselektrizität). William Gilbert setzte die Arbeiten von Petrus Peregrinus de Maricourt aus dem 13. Jahrhundert fort und fand heraus, dass auch andere Stoffe durch Reibung elektrisiert werden können und entwickelte das Versorium, eine frühe Bauform eines Elektroskops.


Übersicht

Die von einer gegebenen Ladung Q auf ein Objekt ausgeübte Kraft ist proportional zur Ladung q des Objektes. Sie lässt sich also durch die Gleichung beschreiben; E ist die Feldstärke des die Ladung Q begleitenden elektrischen Feldes.

Von einem äußeren elektrischen Feld werden in Leiter (Physik) und Isolator (Elektrotechnik) unterschiedliche Effekte hervorgerufen. Die freien elektrischen Ladungen in Leitern, z. B. die Leitungselektronen der Metalle, verschieben sich makroskopisch solcherart, dass das elektrische Feld im gesamten Inneren des Leiters verschwindet (siehe faradayscher Käfig). Dieses Phänomen wird Influenz genannt. Andererseits reagieren die lokal gebundenen Ladungen in einem Isolator, also die Elektronen und Atomkern der Atome, durch eine gegenseitige Verschiebung, wodurch der Isolator Polarisation (Elektrizität) wird.

Das von einem elektrostatischen Feld E auf eine Probeladung q wirkende Kraftfeld F ist Konservative Kraftv, das heißt, dass die potentielle Energie W der Probeladung im elektrostatischen Feld nur abhängig ist von der Position x der Probeladung, nicht aber vom Weg, auf dem die Probeladung nach x bewegt wurde. Das bedeutet auch, dass sich das elektrostatische Feld als Gradient (Mathematik) eines #Potential und Spannung|elektrischen Potentials darstellen lässt. Die potentielle Energie einer Probeladung im Potential ist also . Die Differenz zweier elektrischer Potentiale entspricht der elektrischen Spannung. Das Verschwinden des elektrischen Feldes, , ist gleichbedeutend mit räumlich konstantem elektrischen Potential = konst.

Das Feld und damit auch das Potential einer beliebigen Ladungsverteilung in einem homogenen Isolator lässt sich leicht anhand der aus dem coulombschen Gesetz abgeleiteten Gesetzmäßigkeiten berechnen. Das Feld in einem Leiter verschwindet. Eine solche Berechnung ist bei räumlichen Anordnungen von Leitern, Nichtleitern und Ladungen nur in wenigen Fällen einfach.


Das elektrische Feld

Für den elektrostatischen Spezialfall stationärer magnetischer Felder () und verschwindender elektrischer Ströme () folgt aus dem coulombschen Gesetz und der Definition des elektrischen Feldes für das von einer Punktladung Q am Ort erregte elektrische Feld am Ort

Das elektrische Feld ist ein gerichtetes Vektorfeld. Für eine positive Ladung ist es genau von der Ladung weg, für eine negative Ladung zur Ladung hin gerichtet, was gleichbedeutend ist mit der Abstoßung gleichnamiger und der Anziehung entgegengesetzter Ladungen. Seine Stärke ist proportional zur Stärke der Ladung Q und umgekehrt proportional zum Quadrat des Abstands von Q. Der Proportionalitätsfaktor k (siehe Permittivität|Dielektrizitätskonstante) ist die Coulomb-Konstante im Internationales Einheitensystem = 1</math> im Gaußsches Einheitensystem.

Das Maß der elektrischen Elektrische Feldstärke in SI-Einheiten ist

Das von einer Menge an Ladungen, Qi, erregte Feld ist die Summe der Teilbeiträge (Superposition (Physik).

Oder im Fall einer kontinuierlichen Raumladungsverteilung, ρ, das Integralrechnung

Das gaußsche Gesetz beschreibt, dass der Fluss (Physik) des elektrischen Feldes durch eine geschlossene Oberfläche A proportional zur Stärke der von der Oberfläche umschlossenen Ladung Q ist

Der gaußsche Integralsatz verknüpft Fluss und Divergenz eines Vektorfeldes:

woraus folgt, dass die Divergenz des elektrischen Feldes proportional zur Raumladungsdichte ist:

Ein konservatives elektrisches Feld kann durch den Gradienten eines skalaren elektrischen Potentials beschrieben werden

Woraus die Poisson-Gleichung folgt:


Potential und Spannung

Die Potentialdifferenz zwischen zwei Punkten bezeichnet man als elektrische Spannung. Das Produkt aus der Ladung eines Teilchens und der Spannung zwischen zwei Punkten ergibt die Energie, die man benötigt, um das Teilchen von einem Punkt zum anderen zu bringen. Die Einheit des elektrischen Potentials und der elektrischen Spannung ist Volt. Gemäß der Definition von Potential und Spannung gilt Volt = Joule/Coulomb.


Das Potential berechnet sich wie folgt:

Die Integrationsgrenzen ergeben sich aus der Wahl des Nullniveau (Physik). Oft wird dies willkürlich in unendlicher Entfernung festgelegt. Eine Punktladung , die sich am Ort befindet, verursacht am Ort das Potential:

Im Fall einer kontinuierlichen Raumladungsverteilung ist das elektrische Potential durch das folgende Integralrechnung gegeben:

Ist es nicht möglich, eine analytische Lösung des Integrals zu finden, so kann man in eine Potenzreihe entwickeln, siehe Multipolentwicklung oder bei Legendre-Polynom#Erzeugende Funktion.

Das Konzept der Spannung stößt an seine Grenzen, wenn dynamische Vorgänge auftreten. Für veränderliche Magnetfelder lässt sich zwar noch eine Induktionsspannung definieren, jedoch ist diese nicht mehr über eine Potentialdifferenz definierbar. Auch ist die für eine Bewegung der Ladung von einem Punkt zum anderen benötigte Energie nur so lange gleich der Potentialdifferenz zwischen den Punkten, wie die Beschleunigung vernachlässigbar klein ist, da nach der Elektrodynamik beschleunigte Ladungen elektromagnetische Wellen aussenden, die ebenfalls in der Energiebilanz berücksichtigt werden müssen.


Energie des elektrischen Feldes

In einem Kondensator (Elektrotechnik) besteht ein näherungsweise homogenes Feld. Ist die Ladung der einen Platte und die der anderen Platte entsprechend , und beträgt die Größe einer Plattenfläche , so ergibt sich das -Feld Vektor#Länge/Betrag eines Vektors zu

, wobei die elektrische Feldkonstante ist.

Ist der konstante Plattenabstand , und bringt man eine infinitesimal kleine Ladung von der einen auf die andere Platte, so muss gegen das elektrische Feld die infinitesimale Arbeit mit dem Betrag

verrichtet werden. Der Energieerhaltungssatz wegen muss diese Arbeit zu einer Erhöhung der Energie des Kondensators führen. Diese kann aber nur im elektrischen Feld stecken. Durch den Ladungsübertrag erhöht sich die Feldstärke um betragsmäßige

.

Auflösen nach und Einsetzen in die Arbeit ergibt

.

Nun ist aber gerade das Volumen des Plattenkondensators, in dem sich das komplette E-Feld befindet (im idealen Plattenkondensator lässt sich zeigen, dass das E-Feld außerhalb des Plattenkondensators verschwindet, d. h. dort ist ). Integralrechnung|Aufintegrieren und Teilen durch ergibt die Energiedichte

,

wobei die elektrische Verschiebung ist.


Vorkommen, Erzeugung, Anwendungen statischer Ladungen

Vorkommen in der Natur und im Alltag:

  • Gewitterwolken
  • Elektrostatisches Feld der Erde
  • Elektrostatische Entladung, z. B. nach dem Aufladen durch Laufen über Teppichböden, Benutzen von Kunststoff-Geländern, Sitzen auf Sesseln mit Kunstfaser-Bezug, Kämmen mit Plastik-Kamm, Ausziehen eines Kunstfaser-Pullovers.

Erzeugung hoher Spannungen durch Transport statischer Ladungen (in Forschung, Lehre, Industrie):

  • Elektrisiermaschine
  • Van-de-Graaff-Generator Bandgenerator
  • Influenzmaschine

Anwendungen:

  • Elektrofilter
  • elektrostatisch unterstütztes Spritzlackieren
  • Fixierung von Papierblättern auf Flachbettplottern und Messschreiber#X-Y-Schreiber|X-Y-Schreibern
  • Pulverbeschichten
  • Xerographie


Weblinks



siehe auch:




oder zur Hauptseite




Dieser Artikel basiert auf dem Artikel Elektrostatik aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.
Bilder können unter abweichenden Lizenzen stehen. Der Urheber und die jeweilige Lizenz werden nach einem Klick auf ein Bild angezeigt.